A Transfer Learning Method for Covid-19 and Pneumonia Diagnosis Based on Chest Radiograph Classification

High-level architecture

Abstract

Pneumonia has been a tough and dangerous human illness for a history-long time, notably since the COVID-19 pandemic outbreak. Many pathogens, including bacteria or viruses like COVID-19, can cause pneumonia, leading to inflammation in patients’ alveoli. A corresponding symptom is the appearance of lung opacities, which are vague white clouds in the lungs’ darkness in chest radiographs. Modern medicine has indicated that pneumonia-associated opacities are distinguishable and can be seen as fine-grained labels, which make it possible to use deep learning to classify chest radiographs as a supplementary aid for disease diagnosis and performing pre-screening. However, deep learning-based medical imaging solutions, including convolutional neural networks, often encounter a performance bottleneck when encountering a new disease due to the dataset’s limited size or class imbalance. This study proposes a deep learning-based approach using transfer learning and weighted loss to overcome this problem. The contributions of it are three-fold. First, we propose an image classification model based on pre-trained Densely Connected Convolutional Networks using Weighted Cross Entropy. Second, we test the effect of masking non-lung regions on the classification performance of chest radiographs. Finally, we summarize a generic practical paradigm for medical image classification based on transfer learning. Using our method, we demonstrate that pre-training on the COVID-19 dataset effectively improves the model’s performance on the non-COVID Pneumonia dataset. Overall, the proposed model achieves excellent performance with 95.75% testing accuracy on a multiclass classification for the COVID-19 dataset and 98.29% on a binary classification for the Pneumonia dataset.

Publication
In 2023 15th International Conference on Computer Research and Development (ICCRD)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Yuxuan (Eric) Sun
Yuxuan (Eric) Sun
MCS student & Software Engineer

My interests include Web Development, Software Engineering and Applied AI.