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Abstract—Pneumonia has been a tough and dangerous human 

illness for a history-long time, notably since the COVID-19 

pandemic outbreak. Many pathogens, including bacteria or 

viruses like COVID-19, can cause pneumonia, leading to 

inflammation in patients' alveoli. A corresponding symptom is the 

appearance of lung opacities, which are vague white clouds in the 

lungs' darkness in chest radiographs. Modern medicine has 

indicated that pneumonia-associated opacities are distinguishable 

and can be seen as fine-grained labels, which make it possible to 

use deep learning to classify chest radiographs as a supplementary 

aid for disease diagnosis and performing pre-screening. However, 

deep learning-based medical imaging solutions, including 

convolutional neural networks, often encounter a performance 

bottleneck when encountering a new disease due to the dataset's 

limited size or class imbalance. This study proposes a deep 

learning-based approach using transfer learning and weighted 

loss to overcome this problem. The contributions of it are three-

fold. First, we propose an image classification model based on pre-

trained Densely Connected Convolutional Networks using 

Weighted Cross Entropy. Second, we test the effect of masking 

non-lung regions on the classification performance of chest 

radiographs. Finally, we summarize a generic practical paradigm 

for medical image classification based on transfer learning. Using 

our method, we demonstrate that pre-training on the COVID-19 

dataset effectively improves the model's performance on the non-

COVID Pneumonia dataset. Overall, the proposed model achieves 

excellent performance with 95.75% testing accuracy on a 

multiclass classification for the COVID-19 dataset and 98.29% on 

a binary classification for the Pneumonia dataset. 

Keywords—Artificial Intelligence, Deep Learning, Transfer 

Learning, Image Processing, Pneumonia diagnosis 

I. INTRODUCTION 

The World Health Organization (WHO) estimates that 
pneumonia kills about 2 million young children under five every 
year, which has been the main cause of children It has been the 
main cause of child mortality [1]. Mcluckie [2] also suggested 
that bacterial and viral infections are the two primary culprits. 
More specifically, viral pneumonia has caused extreme concern 
due to the COVID-19 epidemic in recent years, which is 
responsible for over 6.5 million deaths [3]. As shown in the work 

of Kermany, Daniel S., et al. [4], the different lung opacity 
patterns caused by different pneumonia types make it possible 
to use neural networks for disease diagnosis, i.e., image 
classification. Furthermore, it is intuitive to hypothesize that 
using lung-area images (excluding the non-lung area) as input 
can offer sufficient feature information for the classifier. 

When applying image-based deep learning methods to 
medical images, an effective and useful technique for it is 
transfer learning, especially for tasks with limited data due to 
privacy restrictions or lack of expert ground truth [5]-[7]. 
Generally speaking, instead of training a new network from 
scratch, it is better to pre-train a Convolutional Neural Network 
(CNN or ConvNet) on a large dataset in other domains like 
ImageNet. Additionally, the greater the similarity between the 
original task and the new task, the greater the transferability gap, 
but even features pre-trained on distant tasks are superior to 
random weight, according to Yosinski, Jason, et al. [7]. This 
conclusion has been proved in [4], where weights transferred 
from ImageNet help the model achieve better performance on 
the pneumonia classification task. Therefore, theoretically 
speaking, as COVID-19 lung radiographs are comparable to 
those of other viral pneumonia, a network pre-trained on 
ImageNet and the COVID dataset could achieve similar 
accuracy on the (non-COVID) pneumonia dataset. 

Another factor that affects the performance of CNN is how 
we deal with the class imbalance. Uneven distribution of data 
categories is common in medical imaging tasks, which is likely 
to hinder the performance of classifiers [8]. The common 
strategies to overcome it include data augmentation [9] (e.g., 
image manipulations and GAN-based methods) and weighted 
loss function [10]. It is tricky to augment the dataset without 
introducing a new domain gap so that the weighted loss function 
could be more generic and time-saving. 

In this study, in order to address the above three topics and 
related problems, we conduct experiments on two related 
datasets: the COVID-19 Radiography Database [11], [12] 
(COVID dataset) and Chest X-Ray Images (Pneumonia dataset) 
[13]. Both of them are chest x-ray images, while the former 
consists of 4 categories of images (3616 COVID-19 positive 
cases along with 10,192 Normal, 6012 Lung Opacity, and 1345 
Viral Pneumonia images) and corresponding ground-truth lung
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Fig. 1. Transfer Learning Paradigm (A modified version of Figure. 1 in [4]. In this study, we omit the part of data augmentation to emphasize the effect of Weighted 

Loss Function. * DenseNet121_Weights.IMAGENET1K_V1.transforms from torchvision package is used as the Inference Transform.) 

masks. The latter dataset consists of 2 categories of images 
(4273 positive pneumonia cases (including Bacterial and viral) 
along with 1583 Normal) without masks.  

Contributions. Our key contributions are listed as follows: 

• We propose an image classification model based on pre-
trained DenseNet-121 using Weighted Cross Entropy, 
which is fine-tuned on the COVID dataset and achieves 
excellent performance with a test accuracy of 95.75%. 
Fig. 1 presents an overview of our model, which takes 
chest radiographs (raw images or masked images) as 
inputs and predicts the corresponding labels. 

• We tested the effect of masking non-lung regions on the 
classification performance of chest radiographs and find 
that using raw images as inputs get better performance. 

• We have summarized a generic practical paradigm for 
medical image classification based on transfer learning. 
Using our method, we demonstrate that pre-training on 
the COVID dataset effectively improves the classifier 
performance on the (non-COVID) Pneumonia dataset 
(both as a fixed feature extractor or a pre-trained model 
to fine-tune). Overall, the pre-trained model, which was 
fine-tuned on the pneumonia dataset, can achieve a 
testing accuracy of 98.06%. 

II. RELATED WORK 

A. AI screening Viral and COVID-19 Pneumonia 

In [11], AI (Image classifiers based on CNN) was used to 
detect COVID-19-related pneumonia from chest X-ray images. 
Those authors created a public database consisting of 423 
COVID-19, 1485 viral pneumonia, and 1579 normal chest X-
ray images. The transfer learning method with data 
augmentation was used to train several pre-trained CNNs, which 
achieved 99.7% accuracy. This research has shown the 
feasibility of pneumonia diagnosis based on X-ray image 
classification. Also, DenseNet-201 (with data augmentation) 
using transfer learning techniques achieved its best score, which 
inspired us to design a similar architecture for our comparable 
tasks. 

B. Transfer Learning 

As mentioned in [4], [7], [11], transfer learning is the core 
technique for most classification tasks. There are three main 
scenarios of Transfer Learning, including using CNN as a fixed 
feature extractor, fine-tuning the CNN and using pre-trained 
models. PyTorch Image Models (timm) [14] is a PyTorch 
package built by Ross Wightman, which is a collection of image 

models, pre-trained weights, and other useful tools. In this paper, 
our image models use models from timm, which were pre-
trained on ImageNet. Moreover, when dealing with a medical 
imaging task, datasets consisting of grayscale images (e.g., 
radiographs) are quite common, which means that inputs are 
training images with a single channel instead of RGB images 
with 3 channels. However, most pre-trained models were trained 
on colorful datasets (e.g., ImageNet). Previous studies [15] have 
shown that using color or grayscale images is a factor that affects 
model performance. In this study, we tested and compared the 
performance disparities between two naive methods without 
changing the weights pre-trained on color images. 

C. Dense Convolutional Network 

As ResNet significantly changed the parameterization of 
deep network functions, the Dense convolutional Network 
(DenseNet) is, in a sense, its logical extension [16]. Composed 
of dense blocks (the modified "batch normalization, activation, 
and convolution" structure used by ResNet) and transition layers, 
DenseNet can be considerably deeper, more expeditious and 
more accurate to train because of the shorter connections it 
contains between layers close to the input and those adjacent to 
the output. In [11], DenseNet-201, namely the DenseNet with 
201 layers, is used to acquire the best score. However, it is 
possible and more accessible for an uncomplicated classification 
task to train a DenseNet with fewer layers for real application. 
Hence a DenseNet-121 is chosen as the baseline after 
fundamental experiments. Combining previous work [17] with 
our experiments, we designed the baseline model using Adam 
with Nesterov Momentum (NAdam) as an optimizer with 
determined hyper-parameters. 

D. Weighted Cross Entropy Loss 

The original Cross-entropy loss function for image 
classification cannot focus on the frequency of classes during 
training and thus results in potentially lower accuracy on 
datasets with class-imbalance problems [10]. A straightforward 
solution is using weighted loss functions (Weighted Cross 
Entropy, WCE), including Balanced Cross Entropy, Inverse 
Class Frequency, and Focal Loss [18]. Substantial research has 
proven their effectiveness qualities for image classification [19]. 

III. METHODOLOGY 

A. Generic Practical Paradigm 

According to our experiments, we have summarized a 
generic practical paradigm to solve medical image classification 
tasks, which also has been formalized with mathematics. 
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Fig. 2. Transfer Learning Paradigm (a modified version of [4, Fig. 1]) 

For instance, take one example as input with the shape of 
ℎ × 𝑤 × 𝑐 , where ℎ  denotes height, 𝑤  denotes width, and 𝑐 
denotes channel. ℋ  denotes the hypothesis class, namely the 
proposed classification model. 

The overall problem is to devise such a ℋ to achieve a map 
as (1): 

 ℋ: 𝑅ℎ×𝑤×𝑐 → 𝑅𝑘 () 

where 𝑘 denotes the number of image categories. 

More specifically, using ℋ(1)  denotes the transferred 

network, and ℋ(2)  denotes the target task, we can represent 
those two processes as follows: 

 ℋ(1): 𝑅ℎ𝟙×𝑤𝟙×𝑐𝟙 → 𝑅𝑐𝟙
′×ℎ𝟙

′×𝑤𝟙
′

→ 𝑅𝑘𝟙  () 

  ℋ(2): 𝑅ℎ𝟚×𝑤𝟚×𝑐𝟚 → 𝑅𝑐𝟚
′×ℎ𝟚

′×𝑤𝟚
′

→ 𝑅𝑘𝟚 () 

Afterward, if we roughly divide the model into two 
ingredients: the first one is the feature extractor (e.g., in our 
model, it is the DenseNet, in which its global average pool and 
the fully-connected layer have been removed), and the other one 
is the classification layer (e.g., in our model, it consists of a 
global average pool along with an MLP) 

 ℋ𝜃
(1)(𝘟) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝜃2

(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝜃1
(𝘟))  () 

 ℋ𝜃
(2)(𝘟) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝜃2
′ (𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟

𝜃1
′(𝘟)) () 

where: 

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟: 𝑅ℎ×𝑤×𝑐 → 𝑅𝑛 () 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟: 𝑅𝑛 → 𝑅𝑘𝑖  () 

In our proposed model, 𝘟 denotes a general tensor, and its 
indexing mechanism (e.g., 𝑥𝑖𝑗𝑘  and [𝘟]1,2𝑖−1,3 ) is a natural 

extension of matrix indexing. Each image is delivered as a 3𝑟𝑑-
order tensor whose axes correspond to its height, width, and 

channel. However, in real coding, the input is not a single 3𝑟𝑑-

order tensor but a 4𝑡ℎ-order tensor because of using Mini-Batch, 
where separate photos are indexed along the first axis. The 

number of channels is whether 1 or 3. 𝑤1

′
= ℎ1

′
= 𝑤2

′
=

ℎ2

′
= 224, 𝑘1 = 4, 𝑘2 = 2 . The process of pre-training on 

ImageNet can be absorbed in (2).  

While Fig. 2 shows our paradigm briefly with visualization, 
the whole idea of transfer learning can also be generalized as 
follows: 

1) Pre-training  

Training 𝜃1 on the larger and more fine-grained datasets (e.g 
on ImageNet firstly and COVID dataset secondly in this study). 

2) Initialization 

Let 𝜃1
′ ≔ 𝜃1 as the parameter initialization for 𝜃1

′. 

3) Optimization 

 minimize𝜃
1

𝑚
∑ 𝑙𝑐𝑒(ℎ𝜃(𝘟), 𝑦(𝑖))𝑚

𝑖=1  (8) 

B. Dataset Description 

Two datasets are chosen for our experiments, which both 
consist of chest radiographs. The different patterns of lung 
opacity existing in different types of images make it possible to 
classify [4]. In addition, there is an obvious feature of them in 
common should be emphasized. Both of them contain class-
imbalance problems. 

1) COVID-19 Radiography Database 
COVID-19 RADIOGRAPHY DATABASE (COVID 

dataset) [11], [12] consists of 3616 photos labelled as COVID 
photos, 6012 as Lung_Opacity, 10192 as Normal, and 1345 as 
Viral Pneumonia with a significant class imbalance in the 
dataset. As a so-called COVID dataset, only about 17% of its 
images are labeled COVID. Despite it, the advantage of this 
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Fig. 3. Some samples of COVID Dataset and corresponding masked images 

(* Masked images are generated with method in 

 

Fig. 4. Some samples of Pneumonia Dataset 

dataset is that each image has a corresponding lung mask, 
which professional doctors have labeled. 

Our first experiment tested the classifier's performance 
using masked images (without non-lung details) as inputs. Each 
mask image consists of white pixels (lung area) and black pixels 
(non-lung area). To generate the masked images, we adjust the 
values of the white and black areas in masks to 0 and 1, 
respectively, and apply elementwise multiplying for images and 
masks after resizing them correctly. The operation can be 
presented as (9): 

(9)

 

where C stands for the masked image, A and B for its raw image 
and mask, respectively. Fig. 3 shows some samples of the 
COVID dataset. 

We reshuffle all images and divide them in the ratio of 
7:1.5:1.5 into training, validation, and test data sets. 

2) Chest X-Ray Images 
As shown in Fig. 4, these chest radiographs (Pneumonia 

Dataset) were chosen from a group of patients at the Guangzhou 
Women and Children's Medical Center [13]. The dataset 
includes 1583 Normal images and 4273 Pneumonia images with 
a class imbalance.  

Note that the images labeled as PNEUMONIA contain both 
viral and bacterial pneumonia, which means that this study uses 
a coarse-grained binary classification on this dataset.  

We reshuffle all images and divide them into training, 
validation, and test sets in the ratio of 7:2:1. 

The model fine-tuned on the COVID dataset will be 
transferred to this dataset as a fixed feature extractor (or continue 
to fine-tune) to train a binary classifier. 

C. CNN Model Selection 

According to works in [11], [17], DenseNet has been proven 
effective in COVID-19 detection tasks based on chest 
radiographs. In addition, considering the trade-off between 
model accuracy and computational scale, we finally chose 
DenseNet-121 as the baseline. 

 

Fig. 5. How Dense Blocks makes up DenseNet [16, Fig.2] 

TABLE I.  PROPOSED MODEL ARCHITECTURE (A MODIFIED VERSION OF 

[16, TABLE. 1]) 

Layers Output Size DenseNet-121 

Convolution 112 × 112  7 × 7 conv, stride 2  

Polling 56 × 56 3 × 3 max pool, stride 2 

Dense Block 

(1) 
56 × 56 [

1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 6 

Transition Layer 

(1) 

56 × 56 1 × 1 conv 

28 × 28 2 × 2 average pool, stride 2 

Dense Block 

(2) 
28 × 28 [

1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 12 

Transition Layer 

(2) 

28 × 28 1 × 1 conv 

14 × 14 2 × 2 average pool, stride 2 

Dense Block 

(3) 
14 × 14 [

1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 24 

Transition Layer 

(3) 

14 × 14 1 × 1 conv 

7 × 7 2 × 2 average pool, stride 2 

Dense Block 
(4) 

7 × 7 [
1 × 1 𝑐𝑜𝑛𝑣
3 × 3 𝑐𝑜𝑛𝑣

] × 16 

Classification 

Layer 
1 × 1 

7 × 7 global average pool 

64D fully-connected, Mish 

4D fully-connected, Softmax 

Fig. 5 illustrates how a DenseNet is composed of multiple 
Dense Blocks, while a Dense Block is made up of several 
convolution blocks, all of which have the same number of output 
channels. [16]. In its PyTorch implementation [14], each Dense 
Block consists of a Conv2d layer and a BatchNormAct2d layer. 
DenseNet is distinguished by the connection pattern in which 
each layer connects to all its preceding levels and the 
concatenation operation (rather than the addition operator in 
ResNet) to preserve and reuse information from previous layers. 
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While the details of the principle and implementation of 
DenseNet can be found in [16], we use the model as the feature 
extractor and modify the last Classification Layer, where we 
remain the global average pool but replace the 1000D fully-
connected layer with a multilayer perceptron that consists of a 
64D fully-connected layer, a Mish [20] as the activation function 
and a 4D fully-connected layer (or 2D fully-connected layer for 
the pneumonia dataset). The DenseNet-121 architecture we 
modified for the COVID dataset is shown in Table I. 

In our model, the number of input channels in the first 
convolutional layer is either 1 or 3, depending on the processing 
method used in “D. Pre-processing”, i.e., the number of channels 
in input images. 

D. Pre-processing 

Firstly, we need to consider how we deal with the channel of 
input grayscale images. As we have already mentioned, most 
(including the one we used) pre-trained models are trained on 
color datasets, which means that the underlying features they 
acquired are associated with RGB channels [15], and the number 
of input channels is 3. However, our two datasets consist of 
grayscale images, which only include one channel. In the 
subsequent experiments, we tested two methods separately: 

1) Pseudo-RGB 
Copy the single channel data of each image into three 

channels to make up a pseudo-RGB image, and the original 
model is directly used for training. 

2) Single-Channel 
Change the number of input channels of the first 

convolutional layer in the model (parameter “in_channels” of 
the first “torch.nn.Conv2d”) to 1, and single-channel images are 
used as inputs. 

Afterward, we apply the inference transforms to input 
images, which perform the following operations as our 
preprocessing: Accepts batched images. All images are resized 
to 256 × 256 using bilinear interpolation, followed by a central 
crop which converts them into 224 × 224. Finally, the values 
are rescaled to [0.0, 1.0] and then normalized with mean values 
of [0.485, 0.456, 0.406] and standard deviation values of [0.229, 
0.224, 0.225] (in method 2, they are [0.485] and [0.229], 
respectively). 

E. Weighted Loss Function 

Considering the existence of class imbalance in the dataset, 
we tested the effect of different weighted loss functions on 
improving classification accuracy: 

1) Cross Entropy 
Given the n-class classification task (where Class = {0 ,1, …, 

n}, Cross Entropy loss of the object which belongs to class i can 
be calculated as follows:  

  𝑙𝐶𝐸(𝑖) = ∑ 𝑖1 − 𝑡𝑖 log(𝑃(𝑖)) () 

In (10), 𝑡𝑖 is the corresponding one-hot vector indicating the 
label. 𝑃(𝑖) is a vector of logits. 

2) Weighted Cross Entropy 

 𝑙𝑊𝐶𝐸(𝑖) = ∑ 𝑖1 − 𝑤𝑡𝑖 log(𝑃(𝑖)) () 

In (11), 𝑤 is a weight vector whose value can be chosen class 
by class. Next, we will introduce the weighting methods we 
chose for our experiments: 

a) Weighted Cross Entropy using 1-Class Frequency 

 𝑀 = ∑ 𝑁𝑖
𝑛
𝑖=1  () 

 𝑤 = 1 −
𝑁𝑖

𝑀
 () 

In (12), (13), 𝑁𝑖  denotes the number of samples of the 
particular class i (in the training set). 𝑀 denotes the total number 
of the (training) dataset. 

b) Weighted Cross Entropy Using Inverse Class 

Frequency 

 𝑤  =  
𝑀

𝑁𝑖
 () 

Symbols in (14) have same meaning in a). 

c) Focal Loss 

 𝑤 = α(1 − 𝑃(𝑖))
𝛾
  () 

Focal Loss [18], [22] can also be considered as a kind of 
weighted cross entropy loss function. However, its weights are 
adjusted automatically rather than fixed.  

By using the confidence of classifier 𝑤 = 𝛼(1 − 𝑃(𝑖))
γ
 as 

weights, where  γ is a positive hyperparameter, the classifier is 
less confident in minority-class objects. In other words, lower 
value of 𝑃(𝑖) leads to the correspondingly larger weight 𝑤 and 
automatically bring focus to itself in the training process. 

F. Performance Evaluation 

The performance of models was evaluated using four main 
classification metrics: accuracy, recall (sensitivity), precision 
(PPV), and F1 score presented in (16)-(19). Furthermore, those 
values of positive classes (COVID and Pneumonia) on two 
datasets are computed with the confusion matrix. 

Accuracy
classi

=
TPclassi

+TNclassi

TPclassi
+TNclassi

+FPclassi
+FNclassi

 (16) 

 Precisionclassi
=

TPclassi

TPclassi
+FPclassi

 (17) 

 Sensitivityclassi
=

TPclassi

TPclassi
+FNclassi

 (18) 

 F1classi
=

2×Precisionclassi
×Recallclassi

Precisionclassi
+Recallclassi

 (19) 

For the multiclass classification on the COVID dataset, 
𝑐𝑙𝑎𝑠𝑠𝑖 ∈ { 𝐶𝑂𝑉𝐼𝐷, 𝐿𝑢𝑛𝑔_𝑂𝑝𝑎𝑐𝑖𝑡𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙,
𝑉𝑖𝑟𝑎𝑙 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎} . For the binary classification on the 
Pneumonia dataset, 𝑐𝑙𝑎𝑠𝑠𝑖 ∈ {𝑁𝑜𝑟𝑚𝑎𝑙, 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎}. 

171
Authorized licensed use limited to: University of Ottawa. Downloaded on April 06,2024 at 22:54:51 UTC from IEEE Xplore.  Restrictions apply. 



In real disease diagnosis, people tend to attach more 
importance to a certain positive class. For example, the recall of 
COVID is more important than the overall precision for 
pandemic prevention. We possibly would rather identify healthy 
samples or patients with viral pneumonia as COVID than miss 
the diagnosis. However, in this study, we use overall accuracy 
as the measure of model performance to simplify model tuning. 
In the training process, models are trained with 30 epochs, and 
a group of parameters with the highest accuracy on the 
validation set is selected as the final weights. 

 

TABLE II.  PERFORMANCE ON COVID CLASS USING DIFFERENT INPUTS 

AND PRE-PROCESSING 

Schemes channels 

Test 

COVID 

Precision 

Test 

COVID 

Sensitivity 

(Recall) 

Test 

COVID 

F1-

Score 

Raw 

Images  

1 97.08% 96.57% 96.83% 

3 98.66% 97.36% 98.01% 

Masked 
Images  

1 93.20% 85.81% 89.89% 

3 95.01% 90.50% 92.70% 

TABLE III.  WEIGHTED AVERAGE PERFORMANCE USING DIFFERENT INPUTS AND PRE-PROCESSING 

Schemes channels Test Loss Test Accuracy Test Precision Test Sensitivity (Recall) Test F1-Score 

Raw Images  

1 0.2685 95.32% 95.61% 96.03% 95.81% 

3 0.2296 95.75% 96.20% 96.71% 96.45% 

Masked Images  

1 0.2269 91.92% 91.72% 91.38% 91.51% 

3 0.2603 93.48% 93.73% 93.42% 93.55% 

IV. EXPERIMENTS AND RESULTS 

Common premise: In the following experiments, we use 
NAdam [23] as the optimizer, MultiStepLR with milestones = 
[8, 15, 25] as the learning rate scheduler, and Cross Entropy Loss 
as the loss function for all validations and tests. We maintain the 
ratio of batch size to the learning rate to be 1.6e4. For example, 
when the batch size is set to 32, the corresponding learning rate 
is 2e-3. 

A. Experiment 1. Masked Images as Inputs 

In this experiment, the batch size is set to 16, the learning 
rate is set to 2e-3, and weighted cross-entropy loss using 1-class 
frequency is used for training optimization, while cross-entropy 
loss without weights is used for validation and testing. All 
models are initialized with the same pre-trained weights. A total 
of four experimental groups were set up to test the difference in 
performance between the two kinds of input images (raw images 
and masked images) and the two types of image pre-processing 
(pseudo-RGB images and single-channel grayscale images). 

Table. II shows the weighted average performance among all 
classes. Table. III shows the performance for the COVID images. 
The feature “channels” represents the corresponding pre-
processing method (“1” denotes single-channel, “3” denotes 
pseudo-RGB). The results illustrate that using raw images with 
the non-lung area as inputs leads to a significantly better 
classification performance than using masked images without 
non-lung areas. Considering that, in theory, the non-lung area is 
supposed to be unhelpful for pneumonia diagnosis, these results 
are quite confusing. Whether this is the result of some medical 
facts or overfitting still needs further experiments and studies 
with the help of medical experts. 

Additionally, using single-channel images as inputs leads to 
slightly lower accuracy, most likely the result of using 
parameters pre-trained on color datasets.

 

Since the lack of parameters pre-trained on grayscale 
ImageNet and the higher priority on accuracy over training 
speed in disease diagnosis, we decided to use pseudo-RGB (i.e., 
3-channels) raw images as inputs for the following experiments.

 

B.
 

Experiment 2. Comparing Different Weighted Loss 

Functions
 

After experiment 1, we found that due to the limitation of the 
dataset size, 100% training accuracy can be achieved within 30 
epochs using Cross Entropy alone. We believe that weighted 
loss functions may have little improvement in accuracy, and it is 
hard to say which one is better. Nevertheless, we believe that

 

weighted loss can potentially reduce the time of model 
convergence. Therefore, we followed some hyperparameter 
settings during Experiment 1 and designed the experiments as 
shown in Table IV.

 
In all 4 experiment groups, the batch size is 

set to 16, the learning rate is set to 2e-3, and pseudo-RGB raw 
images are used as inputs. All models were trained for 30 epochs, 
from which the group of parameters leading to the highest 
accuracy on the validation set was selected as the optimal 
parameters.

 

Table IV shows that using weighted cross-entropy loss can 
not only accelerate the training process but also improve 
classification accuracy
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TABLE IV.  PERFORMANCE USING DIFFERENT WEIGHTED LOSS 

  

Cross 

Entropy 

Loss 

𝒍𝑾𝑪𝑬 

using 1-

CF 

𝒍𝑾𝑪𝑬 using 

Inverse CF 

Focal 

Loss 

Best Test 
Accuracy  

94.68% 95.75% 95.13% 94.51% 

Epochs needed 

for training 
30 25 23 19 

C. Experiment 3. Transfer Learning on Pneumonia Dataset 

According to the results of experiments 1 & 2, we suggest 
that the weighted cross entropy loss using 1-Class Frequency as 
weights is more suitable for this task. In the last experiment, we 
transferred the best model to the coarse-grained pneumonia 
dataset to test and compare its performance with other control 
groups. In this experiment, pseudo-RGB raw images are used as 
inputs, and the rest of the hyperparameter settings are the same 
as those in Experiment 2. 

As shown in Table V and Table VI, within 30 epochs, our 
transfer learning method significantly improves the performance 
of the same model. More specifically, the fine-tuned model pre-
trained on ImageNet and COVID has the best performance with 
the highest test accuracy and less training time needed compared 
with the same model without pre-training. Furthermore, using 
the model pretrained on ImageNet and COVID as the feature 
extractor also leads to better performance than its counterpart 
pretrained only on ImageNet. 

Fig. 6 and Fig. 7 show the ROC curves of our best models 
on those two datasets. Fig. 8 shows the confusion matrices for 
corresponding tests.  

Overall, our proposed model achieves excellent performance 
with a weighted average F1-score of 96.45% on the multiclass 
classification for the COVID-19 dataset and 98.29% on the 
binary classification for the Pneumonia dataset. Our method is 
accurate enough for both tasks, with a test precision of 98.66% 

for COVID and 98.30% for Pneumonia. Our related code is 
available in [24] 

 

Fig. 6. ROC Curve for 4-Class Classification on COVID Dataset 

 

Fig. 7. ROC Curve for Binary Classification on Pneumonia Dataset 

.

TABLE V.  WEIGHTED AVERAGE PERFORMANCE ON PNEUMONIA DATASET 

Pre-trained Dataset Schemes Test Loss Test Accuracy Test WA precision Test WA recall 
Test WA f1-

score 
Epoch 

 

None Fine-tune 0.0773 96.59% 96.59% 96.59% 96.59% 19  

ImageNet Fine-tune 0.0728 97.44% 98.59% 97.90% 98.25% 11  

ImageNet Feature Extractor 0.1401 94.88% 94.90% 94.88% 94.89% 28  

ImageNet & COVID Fine-tune 0.0649 98.29% 98.29% 98.29% 98.29% 16  

ImageNet & COVID Feature Extractor 0.0823 97.10% 97.17% 97.10% 97.12% 29  

 

 

 

 

 

173
Authorized licensed use limited to: University of Ottawa. Downloaded on April 06,2024 at 22:54:51 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VI.  PERFORMANCE ON PNEUMONIA CLASS IN PNEUMONIA DATASET 

Pre-trained Dataset Schemes Test Pneumonia Precision 
Test Pneumonia Sensitivity 

(Recall) 
Test Pneumonia F1-Score 

 

None Fine-tune 97.67% 97.67% 97.67%  

ImageNet Fine-tune 98.59% 97.90% 98.25%  

ImageNet Feature Extractor 96.72% 96.27% 96.50%  

ImageNet & COVID Fine-tune 98.38% 99.30% 98.84%  

ImageNet & COVID Feature Extractor 98.82% 97.20% 98.00%  

 

Fig. 8.
 

Confusion matrices of
 
classification on COVID dataset

 
(A), and Pneumonia dataset (B) using our best model

 

V.

 

CONCLUSIONS

 

In this study, we proposed a

 

deep-learning method using 
chest radiographs to help with COVID-19 and Pneumonia 
diagnosis.

 

Specifically, a generic practical paradigm was summarized 
to devise a suitable model for specific medical imaging 
classification tasks. Our proposed model consists

 

of a DenseNet-
121-based feature extractor and an MLP classifier. Our 
experiments concluded that using radiographs without non-lung 
area was possible to train a practicable model but made it harder 
to train a classification model with high accuracy. Furthermore, 
a particular weighted cross entropy loss function was selected 
after experiments to overcome the class-imbalance problem, 
which not only improved our model's testing accuracy but also 
reduced training time costs. Finally, after being fine-tuned on 
two datasets, our pre-trained model achieved satisfying 
performance with 95.75% testing accuracy, 96.71% sensitivity, 
and 96.20% precision for the COVID-19 dataset. Regarding the 
Pneumonia dataset, our model achieved 98.29

 

% testing 
accuracy and 99.30% sensitivity for pneumonia samples.

 

In future studies, we will go further to pre-train some popular 
models on grayscale ImageNet to thoroughly investigate the 
remaining doubts on Experiment 1 and make an effort to resolve 
medical imaging tasks more efficiently.
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